Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials | Journal of the International Society of Sports Nutrition


  • 1.

    Coggan AR, Peterson LR. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc Sport Sci Rev. 2018;46(4):254–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Bailey JC, Feelisch M, Horowitz JD, Frenneaux MP, Madhani M. Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation. Pharmacol Ther. 2014;144(3):303–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Stamler JS, Meissner G. Physiology of Nitric Oxide in Skeletal Muscle. Physiol Rev. 2001;81(1):209–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal. 2013;18(10):1208–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, et al. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal. 2001;3(2):203–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Menezes EF, Peixoto LG, Teixeira RR, Justino AB, Puga GM, Espindola FS. Potential Benefits of Nitrate Supplementation on Antioxidant Defense System and Blood Pressure Responses after Exercise Performance. Oxid Med Cell Longev. 2019;2019:7218936.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Jones AM, Thompson C, Wylie LJ, Vanhatalo A. Dietary Nitrate and Physical Performance. Annu Rev Nutr. 2018;38(1):303–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):2046–62.

    PubMed 

    Google Scholar
     

  • 10.

    Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, et al. Vascular protection by dietary polyphenols. Eur J Clin Pharmacol. 2004;500(1-3):299–313.

    CAS 

    Google Scholar
     

  • 11.

    Reid MB. Redox interventions to increase exercise performance. J Physiol. 2016;594(18):5125–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020;9(5):415–25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Bowtell J, Kelly V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019;49(Suppl 1):3–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Blekkenhorst LC, Prince RL, Ward NC, Croft KD, Lewis JR, Devine A, et al. Development of a reference database for assessing dietary nitrate in vegetables. Mol Nutr Food Res. 2017;61(8).

  • 15.

    Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J Funct Foods. 2015;18:820–97.

    CAS 

    Google Scholar
     

  • 16.

    Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Bondonno CP, Yang X, Croft KD, Considine MJ, Ward NC, Rich L, et al. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial. Free Radic Biol Med. 2012;52(1):95–102.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr. 2018;58(8):1310–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72(7):429–52.

    PubMed 

    Google Scholar
     

  • 20.

    Scalbert A, Williamson G. Dietary Intake and Bioavailability of Polyphenols. J Nutr. 2000;130(8):2073S–85S.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    McIlvenna LC, Monaghan C, Liddle L, Fernandez BO, Feelisch M, Muggeridge DJ, et al. Beetroot juice versus chard gel: A pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability. Nitric Oxide. 2017;64:61–7.

    PubMed 

    Google Scholar
     

  • 22.

    James PE, Willis GR, Allen JD, Winyard PG, Jones AM. Nitrate pharmacokinetics: Taking note of the difference. Nitric Oxide. 2015;48:44–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Rothwell JA, Medina-Remón A, Pérez-Jiménez J, Neveu V, Knaze V, Slimani N, et al. Effects of food processing on polyphenol contents: A systematic analysis using Phenol-Explorer data. Mol Nutr Food Res. 2015;59(1):160–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu Rev Food Sci Technol. 2017;8(1):155–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24(2):370.

    PubMed Central 

    Google Scholar
     

  • 26.

    Vassalle C, Lubrano V, Domenici C, L’Abbate A. Influence of chronic aerobic exercise on microcirculatory flow and nitric oxide in humans. Int J Sports Med. 2003;24(1):30–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Hayashi T, Yamada K, Esaki T, Kuzuya M, Satake S, Ishikawa T, et al. Estrogen Increases Endothelial Nitric Oxide by a Receptor Mediated System. Biochem Biophys Res Commun. 1995;214(3):847–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol. 2018;315(6):H1569–h88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Franzoni F, Galetta F, Morizzo C, Lubrano V, Palombo C, Santoro G, et al. Effects of age and physical fitness on microcirculatory function. Clin Sci (Lond). 2004;106(3):329–35.

    PubMed 

    Google Scholar
     

  • 30.

    Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017;21(5):1024–32.

    PubMed 

    Google Scholar
     

  • 31.

    Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol. 2020;35:101471.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Pickering C, Kiely J. Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition. 2019;67-68:110535.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    PubMed 

    Google Scholar
     

  • 34.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4(863).

  • 35.

    Thompson C, Wylie LJ, Blackwell JR, Fulford J, Black MI, Kelly J, et al. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J Appl Physiol (1985). 2017;122(3):642-652.

  • 36.

    Higgins J, Eldridge S, Li T. Chapter 23: Including variants on randomized trials. 2021. In: Cochrane Handbook for Systematic Reviews of Interventions. Cochrane. Version 6.2. Available from: http://www.training.cochrane.org/handbook.

  • 37.

    Higgins JPT, Li T, Deeks J. Chapter 6: Choosing effect measures and computing estimates of effect. 2020. In: Cochrane Handbook for Systematic Reviews of Interventions. Cochrane. Version 6.1.

  • 38.

    Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A. Meta-analyses involving cross-over trials: methodological issues. Int J Epidemiol. 2002;31(1):140–9.

    PubMed 

    Google Scholar
     

  • 39.

    Martin BJ, Tan RB, Gillen JB, Percival ME, Gibala MJ. No effect of short-term green tea extract supplementation on metabolism at rest or during exercise in the fed state. Int J Sport Nutr Exerc Metab. 2014;24(6):656–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N.J.: L. Erlbaum Associates; 1988.


    Google Scholar
     

  • 41.

    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed 

    Google Scholar
     

  • 42.

    Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–22.

    PubMed 

    Google Scholar
     

  • 44.

    Decroix L, De Pauw K, Foster C, Meeusen R. Guidelines to Classify Female Subject Groups in Sport-Science Research. Int J Sports Physiol Perform. 2016;11(2):204–13.

    PubMed 

    Google Scholar
     

  • 45.

    Aucouturier J, Boissière J, Pawlak-Chaouch M, Cuvelier G, Gamelin FX. Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise. Nitric Oxide. 2015;49:16–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, DiMenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Bailey SJ, Varnham RL, DiMenna FJ, Breese BC, Wylie LJ, Jones AM. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J Appl Physiol. 2015;118(11):1396–405.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Balsalobre-Fernández C, Romero-Moraleda B, Cupeiro R, Peinado AB, Butragueño J, Benito PJ. The effects of beetroot juice supplementation on exercise economy, rating of perceived exertion and running mechanics in elite distance runners: A double-blinded, randomized study. PLoS One. 2018;13(7).

  • 49.

    Bernardi BB, Schoenfeld BJ, Alves RC, Urbinati KS, McAnulty SR, Junior TPS. Acute Supplementation with Beetroot Juice Does Not Enhance Exercise Performance among Well-trained Athletes: A Randomized Crossover Study. J Exerc Physiol Online. 2018;21(3):1–12.


    Google Scholar
     

  • 50.

    Boorsma RK, Whitfield J, Spriet LL. Beetroot juice supplementation does not improve performance of elite 1500-m runners. Med Sci Sports Exerc. 2014;46(12):2326–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Breese BC, McNarry MA, Marwood S, Blackwell JR, Bailey SJ, Jones AM. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am J Physiol Regul Integr Comp Physiol. 2013;305(12):R1441–50.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Callahan MJ, Parr EB, Hawley JA, Burke LM. Single and combined effects of beetroot crystals and sodium bicarbonate on 4-km cycling time trial performance. Int J Sport Nutr Exerc Metab. 2017;27(3):271–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Cermak NM, Res P, Stinkens R, Lundberg JO, Gibala MJ, Van Loon LJC. No improvement in endurance performance after a single dose of beetroot juice. Int J Sport Nutr Exerc Metab. 2012;22(6):470–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Cermak NM, Gibala MJ, Van Loon LJC. Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. Int J Sport Nutr Exerc Metab. 2012;22(1):64–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Christensen PM, Petersen NK, Friis SN, Weitzberg E, Nybo L. Effects of nitrate supplementation in trained and untrained muscle are modest with initial high plasma nitrite levels. Scand J Med Sci Sports. 2017;27(12):1616–26.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Christensen PM, Nyberg M, Bangsbo J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand J Med Sci Sports. 2013;23(1):e21–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    de Castro TF, de Assis MF, Figueiredo DH, Figueiredo DH, Machado FA. Effects of chronic beetroot juice supplementation on maximum oxygen uptake, velocity associated with maximum oxygen uptake, and peak velocity in recreational runners: a double-blinded, randomized and crossover study. Eur J Appl Physiol. 2019;119(5):1043–53.

    PubMed 

    Google Scholar
     

  • 58.

    de Castro TF, Manoel FA, Figueiredo DH, Figueiredo DH, Machado FA. Effect of beetroot juice supplementation on 10-km performance in recreational runners. Appl Physiol Nutr Metab. 2019;44(1):90–4.

    PubMed 

    Google Scholar
     

  • 59.

    de Castro TF, de Assis MF, Machado FA. Beetroot juice supplementation does not modify the 3-km running performance in untrained women. Sci Sports. 2018;33(4):e167–e70.


    Google Scholar
     

  • 60.

    Esen O, Nicholas C, Morris M, Bailey SJ. No Effect of Beetroot Juice Supplementation on 100-m and 200-m Swimming Performance in Moderately Trained Swimmers. Int J Sports Physiol Perform. 2019;14(6):706–10.

    PubMed 

    Google Scholar
     

  • 61.

    Flueck JL, Gallo A, Moelijker N, Bogdanov N, Bogdanova A, Perret C. Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients. 2019;11(7).

  • 62.

    Glaister M, Pattison JR, Muniz-Pumares D, Patterson SD, Foley P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res. 2015;29(1):165–74.

    PubMed 

    Google Scholar
     

  • 63.

    Handzlik MK, Gleeson M. Likely additive ergogenic effects of combined preexercise dietary nitrate and caffeine ingestion in trained cyclists. ISRN Nutr. 2013;2013:396581.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Hoon MW, Hopkins WG, Jones AM, Martin DT, Halson SL, West NP, et al. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl Physiol Nutr Metab. 2014;39(9):1043–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615–20.

    PubMed 

    Google Scholar
     

  • 66.

    Jonvik KL, Van Dijk JW, Senden JMG, Van Loon LJC, Verdijk LB. The effect of beetroot juice supplementation on dynamic apnea and intermittent sprint performance in elite female water polo players. Int J Sport Nutr Exerc Metab. 2018;28(5):468–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM. Effects of nitrate on the power-duration relationship for severe-intensity exercise. Med Sci Sports Exerc. 2013;45(9):1798–806.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Kelly J, Vanhatalo A, Bailey SJ, Wylie LJ, Tucker C, List S, et al. Dietary nitrate supplementation: effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. Am J Physiol Regul Integr Comp Physiol. 2014;307(7):R920–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Kent GL, Dawson B, Cox GR, Burke LM, Eastwood A, Croft KD, et al. Dietary nitrate supplementation does not improve cycling time-trial performance in the heat. J Sports Sci. 2018;36(11):1204–11.

    PubMed 

    Google Scholar
     

  • 70.

    Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39(9):1050–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, et al. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011;43(6):1125–31.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J Appl Physiol. 2011;110(3):591–600.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Lowings S, Shannon OM, Deighton K, Matu J, Barlow MJ. Effect of Dietary Nitrate Supplementation on Swimming Performance in Trained Swimmers. Int J Sport Nutr Exerc Metab. 2017;27(4):377–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    MacLeod KE, Nugent SF, Barr SI, Koehle MS, Sporer BC, MacInnis MJ. Acute Beetroot Juice Supplementation Does Not Improve Cycling Performance in Normoxia or Moderate Hypoxia. Int J Sport Nutr Exerc Metab. 2015;25(4):359–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    McQuillan JA, Dulson DK, Laursen PB, Kilding AE. Dietary nitrate fails to improve 1 and 4 km cycling performance in highly trained cyclists. Int J Sport Nutr Exerc Metab. 2017;27(3):255–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    McQuillan JA, Dulson DK, Laursen PB, Kilding AE. The Effect of Dietary Nitrate Supplementation on Physiology and Performance in Trained Cyclists. Int J Sports Physiol Perform. 2017;12(5):684–9.

    PubMed 

    Google Scholar
     

  • 77.

    Mosher SL, Gough LA, Deb S, Saunders B, Mc Naughton LR, Brown DR, et al. High dose Nitrate ingestion does not improve 40 km cycling time trial performance in trained cyclists. Res. Sports Med. 2019.

  • 78.

    Muggeridge DJ, Howe CCF, Spendiff O, Pedlar C, James PE, Easton C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int J Sport Nutr Exerc Metab. 2013;23(5):498–506.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Murphy M, Eliot K, Heuertz RM, Weiss E. Whole Beetroot Consumption Acutely Improves Running Performance. J Acad Nutr Diet. 2012;112(4):548–52.

    PubMed 

    Google Scholar
     

  • 80.

    Oskarsson J, McGawley K. No individual or combined effects of caffeine and beetroot-juice supplementation during submaximal or maximal running. Appl Physiol Nutr Metab. 2018;43(7):697–703.

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Pawlak-Chaouch M, Boissiere J, Munyaneza D, Gamelin F-X, Cuvelier G, Berthoin S, et al. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J Am Coll Nutr. 2019;1-10.

  • 82.

    Peeling P, Cox GR, Bullock N, Burke LM. Beetroot juice improves on-water 500 M time-trial performance, and laboratory-based paddling economy in national and international-level kayak athletes. Int J Sport Nutr Exerc Metab. 2015;25(3):278–84.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Pinna M, Roberto S, Milia R, Marongiu E, Olla S, Loi A, et al. Effect of beetroot juice supplementation on aerobic response during swimming. Nutrients. 2014;6(2):605–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Rokkedal-Lausch T, Franch J, Poulsen MK, Thomsen LP, Weitzberg E, Kamavuako EN, et al. Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia. Nitric Oxide. 2019;85:44–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Shannon OM, Barlow MJ, Duckworth L, Williams E, Wort G, Woods D, et al. Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur J Appl Physiol. 2017;117(4):775–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Tan R, Wylie LJ, Thompson C, Blackwell JR, Bailey SJ, Vanhatalo A, et al. Beetroot juice ingestion during prolonged moderate-intensity exercise attenuates progressive rise in O-2 uptake. J Appl Physiol. 2018;124(5):1254–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Thompson KG, Turner L, Prichard J, Dodd F, Kennedy DO, Haskell C, et al. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir Physiol Neurobiol. 2014;193(1):11–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Thompson C, Vanhatalo A, Jell H, Fulford J, Carter J, Nyman L, et al. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide. 2016;61:55–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Thompson C, Vanhatalo A, Kadach S, Wylie LJ, Fulford J, Ferguson SK, et al. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J Appl Physiol (1985). 2018;124(6):1519-1528.

  • 90.

    Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121–R31.

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Vasconcellos J, Silvestre DH, Baiao DD, Werneck-de-Castro JP, Alvares TS, Paschoalin VMF. A Single Dose of Beetroot Gel Rich in Nitrate Does Not Improve Performance but Lowers Blood Glucose in Physically Active Individuals. Med J Nutrition Metab. 2017.

  • 92.

    Wilkerson DP, Hayward GM, Bailey SJ, Vanhatalo A, Blackwell JR, Jones AM. Influence of acute dietary nitrate supplementation on 50 mile time trial performance in well-trained cyclists. Eur J Appl Physiol. 2012;112(12):4127–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, et al. Beetroot juice and exercise: Pharmacodynamic and dose-response relationships. J Appl Physiol. 2013;115(3):325–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 94.

    Wylie LJ, Mohr M, Krustrup P, Jackman SR, Ermdis G, Kelly J, et al. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur J Appl Physiol. 2013;113(7):1673–84.

    PubMed 

    Google Scholar
     

  • 95.

    Wylie LJ, Bailey SJ, Kelly J, Blackwell JR, Vanhatalo A, Jones AM. Influence of beetroot juice supplementation on intermittent exercise performance. Eur J Appl Physiol. 2016;116(2):415–25.

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Wylie LJ, Park JW, Vanhatalo A, Kadach S, Black MI, Stoyanov Z, et al. Human skeletal muscle nitrate store: influence of dietary nitrate supplementation and exercise. J Physiol. 2019.

  • 97.

    Gonzalez AM, Accetta MR, Spitz RW, Mangine GT, Ghigiarelli JJ, Sell KM. Red Spinach Extract Supplementation Improves Cycle Time Trial Performance in Recreationally Active Men and Women. J Strength Cond Res. 2019.

  • 98.

    Moore AN, Haun CT, Kephart WC, Holland AM, Mobley CB, Pascoe DD, et al. Red Spinach Extract Increases Ventilatory Threshold during Graded Exercise Testing. Sports. 2017;5(4).

  • 99.

    Muggeridge DJ, Sculthorpe N, Grace FM, Willis G, Thornhill L, Weller RB, et al. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists. Nitric Oxide. 2015;48:3–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Boussetta N, Abedelmalek S, Khouloud A, Ben anes A, Souissi N. Does red orange juice supplementation has a protective effect on performance, cardiovascular parameters, muscle damage and oxidative stress markers following the Yo-Yo Intermittent Recovery Test Level-1 under polluted air? Int J Environ Health Res. 2019.

  • 101.

    Allen JD, McLung J, Nelson AG, Welsch M. Ginseng Supplementation Does Not Enhance Healthy Young Adults’ Peak Aerobic Exercise Performance. J Am Coll Nutr. 1998;17(5):462–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Engels H-J, Said JM, Wirth JC. Failure of chronic ginseng supplementation to affect work performance and energy metabolism in healthy adult females. Nutr Res. 1996;16(8):1295–305.


    Google Scholar
     

  • 103.

    Abbey EL, Rankin JW. Effect of ingesting a honey-sweetened beverage on soccer performance and exercise-induced cytokine response. Int J Sport Nutr Exerc Metab. 2009;19(6):659–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Yi M, Fu J, Zhou L, Gao H, Fan C, Shao J, et al. The effect of almond consumption on elements of endurance exercise performance in trained athletes. J Int Soc Sports Nutr. 2014;11(1).

  • 105.

    Basta P, Pilaczynska-Szczesniak L, Woitas-Slubowska D, Skarpanska-Stejnborn A. Influence of aloe arborescens Mill. Extract on selected parameters of pro-oxidant-antioxidant equilibrium and cytokine synthesis in rowers. Int J Sport Nutr Exerc Metab. 2013;23(4):388–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Hsu CC, Ho MC, Lin LC, Su B, Hsu MC. American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J Gastroenterol. 2005;11(34):5327–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Morris AC, Jacobs I, McLellan TM, Klugerman A, Wang LC, Zamecnik J. No ergogenic effect of ginseng ingestion. Int J Sport Nutr. 1996;6(3):263–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Nieman DC, Gillitt ND, Sha W, Esposito D, Ramamoorthy S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS One. 2018;13(3):e0194843.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab. 2017;42(2):166–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Mumford PW, Kephart WC, Romero MA, Haun CT, Mobley CB, Osburn SC, et al. Effect of 1-week betalain-rich beetroot concentrate supplementation on cycling performance and select physiological parameters. Eur J Appl Physiol. 2018;118(11):2465–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Van Hoorebeke JS, Trias CO, Davis BA, Lozada CF, Casazza GA. Betalain-Rich Concentrate Supplementation Improves Exercise Performance in Competitive Runners. Sports. 2016;4(3).

  • 112.

    Skarpańska-Stejnborn A, Basta P, Pilaczyńska-Szcześniak Ł. The Influence Of Supplementation With The Black Currant (Ribes Nigrum) Extract On Selected Prooxidative-Antioxidative Balance Parameters In Rowers. Stud Phys Cult Tourism. 2006;13(2):51–8.


    Google Scholar
     

  • 113.

    Brandenburg JP, Giles LV. Four Days of Blueberry Powder Supplementation Lowers the Blood Lactate Response to Running But Has No Effect on Time-Trial Performance. Int J Sport Nutr Exerc Metab. 2019;1-7.

  • 114.

    Gaamouri N, Zouhal H, Hammami M, Hackney AC, Abderrahman AB, Saeidi A, et al. Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiol Behav. 2019;205:22–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Pospieszna B, Wochna K, JerszyŃSki D, GowaCinna K, Czapski J. Ergogenic effects of dietary nitrates in female swimmers. Trends Sport Sci. 2016;23(1):13–20.


    Google Scholar
     

  • 116.

    Overdevest E, Wouters JA, Wolfs KHM, Van Leeuwen JJM, Possemiers S. Citrus flavonoid supplementation improves exercise performance in trained athletes. J Sports Sci Med. 2018;17(1):24–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Allgrove J, Farrell E, Gleeson M, Williamson G, Cooper K. Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. Int J Sport Nutr Exerc Metab. 2011;21(2):113–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Decroix L, Tonoli C, Soares DD, Descat A, Drittij-Reijnders M-J, Weseler AR, et al. Acute cocoa Flavanols intake has minimal effects on exercise-induced oxidative stress and nitric oxide production in healthy cyclists: a randomized controlled trial. J Int Soc Sports Nutr. 2017;14:28.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Decroix L, Tonoli C, Lespagnol E, Balestra C, Descat A, Drittij-Reijnders MJ, et al. One-week cocoa flavanol intake increases prefrontal cortex oxygenation at rest and during moderate-intensity exercise in normoxia and hypoxia. J Appl Physiol. 2018;125(1):8–18.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Patel RK, Brouner J, Spendiff O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. J Int Soc Sports Nutr. 2015;12:47.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Ostojic S, Stojanovic M, Djordjevic B, Jourkesh M, Vasiljevic N. The Effects of a 4-week Coffeeberry Supplementation on Antioxidant Status, Endurance, and Anaerobic Performance in College Athletes. Res Sports Med. 2008;16(4):281–94.

    PubMed 

    Google Scholar
     

  • 122.

    Labonté K, Couillard C, Motard-Bélanger A, Paradis M-E, Couture P, Lamarche B. Acute Effects of Polyphenols from Cranberries and Grape Seeds on Endothelial Function and Performance in Elite Athletes. Sports. 2013;1(3):55–68.


    Google Scholar
     

  • 123.

    Chang CW, Chen CY, Yen CC, Wu YT, Hsu MC. Repressed exercise-induced hepcidin levels after Danggui Buxue Tang supplementation in male recreational runners. Nutrients. 2018;10(9).

  • 124.

    Oh JK, Shin YO, Yoon JH, Kim SH, Shin HC, Hwang HJ. Effect of Supplementation With Ecklonia cava Polyphenol on Endurance Performance of College Students. Int J Sport Nutr Exerc Metab. 2010;20(1):72–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Bentley D, Dank S, Coupland R, Midgley A, Spence I. Acute Antioxidant Supplementation Improves Endurance Performance in Trained Athletes. Res Sports Med. 2012;20(1):1–12.

    PubMed 

    Google Scholar
     

  • 126.

    Clifford T, Mitchell N, Scott A. The influence of different sources of polyphenols on submaximal cycling and time trial performance. J Athl Enhanc. 2013;2:S10.


    Google Scholar
     

  • 127.

    Mach J, Midgley AW, Dank S, Grant RS, Bentley DJ. The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD+(H). Nutrients. 2010;2(3):319–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Nayebifar S, Afzalpour ME, Kazemi T, Eivary SHA, Mogharnasi M. The effect of a 10-week high-intensity interval training and ginger consumption on inflammatory indices contributing to atherosclerosis in overweight women. J Res Med Sci. 2016;21(8):116.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    O’Connor PJ, Caravalho AL, Freese EC, Cureton KJ. Grape consumption’s effects on fitness, muscle injury, mood, and perceived health. Int J Sport Nutr Exerc Metab. 2013;23(1):57–64.

    PubMed 

    Google Scholar
     

  • 130.

    Toscano LT, Tavares RL, Toscano LT, Silva CSO, Almeida AEM, Biasoto ACT, et al. Potential ergogenic activity of grape juice in runners. Appl Physiol Nutr Metab. 2015;40(9):899–906.

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Deley G, Guillemet D, Allaert F-A, Babault N. An Acute Dose of Specific Grape and Apple Polyphenols Improves Endurance Performance: A Randomized, Crossover, Double-Blind versus Placebo Controlled Study. Nutrients. 2017;9(8).

  • 132.

    Dean S, Braakhuis A, Paton C. The effects of EGCG on fat oxidation and endurance performance in male cyclists. Int J Sport Nutr Exerc Metab. 2009;19(6):624–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Eichenberger P, Mettler S, Arnold M, Colombani PC. No effects of three-week consumption of a green tea extract on time trial performance in endurance-trained men. Int J Vitam Nutr Res. 2010;80(1):54–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 134.

    Kuo Y-C, Lin J-C, Bernard JR, Liao Y-H. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl Physiol Nutr Metab. 2015;40(10):990–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Knab AM, Nieman DC, Gillitt ND, Shanely RA, Cialdella-Kam L, Henson D, et al. Effects of a freeze-dried juice blend powder on exercise-induced inflammation, oxidative stress, and immune function in cyclists. Appl Physiol Nutr Metab. 2014;39(3):381–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients. 2014;6(2):829–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab. 2015;40(4):414–23.

    PubMed 

    Google Scholar
     

  • 138.

    Keane KM, Bailey SJ, Vanhatalo A, Jones AM, Howatson G. Effects of montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance. Scand J Med Sci Sports. 2018;28(7):1746–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Morgan PT, Barton MJ, Bowtell JL. Montmorency cherry supplementation improves 15-km cycling time-trial performance. Eur J Appl Physiol. 2019;119(3):675–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(2):160–8.

    PubMed 

    Google Scholar
     

  • 141.

    Cook MD, Myers SD, Blacker SD, Willems MET. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur J Appl Physiol. 2015;115(11):2357–65.

    PubMed 

    Google Scholar
     

  • 142.

    Murphy CA, Cook MD, Willems MET. Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance. Sports. 2017;5(2).

  • 143.

    Perkins I, Vine S, Blacker S, Willems M. New Zealand blackcurrant extract improves high-intensity intermittent running performance. Int J Sport Nutr Exerc Metab. 2015;25(Supplement 1):7.


    Google Scholar
     

  • 144.

    Potter JA, Hodgson CI, Broadhurst M, Howell L, Gilbert J, Willems MET, et al. Effects of New Zealand blackcurrant extract on sport climbing performance. Eur J Appl Physiol. 2019.

  • 145.

    Willems MET, Myers SD, Gault ML, Cook MD. Beneficial physiological effects with blackcurrant intake in endurance athletes. Int J Sport Nutr Exerc Metab. 2015;25(4):367–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Willems M, Cousins L, Williams D, Blacker S. Beneficial effect of New Zealand blackcurrant on maximal sprint speeds during the Loughborough intermittent shuttle test. Int J Sport Nutr Exerc Metab. 2016;26(Supplement 1):S7–8.


    Google Scholar
     

  • 147.

    Esquius L, Garcia-Retortillo S, Balagué N, Hristovski R, Javierre C. Physiological- and performance-related effects of acute olive oil supplementation at moderate exercise intensity. J Int Soc Sports Nutr. 2019;16(1).

  • 148.

    Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, Galvan-Alvarez V, Curtelin D, Perez-Valera M, et al. Enhancement of exercise performance by 48 hours, and 15-day supplementation with mangiferin and luteolin in men. Nutrients. 2019;11(2).

  • 149.

    Crum EM, Barnes MJ, Stannard SR. Multiday Pomegranate Extract Supplementation Decreases Oxygen Uptake During Submaximal Cycling Exercise, but Cosupplementation With N-acetylcysteine Negates the Effect. Int J Sport Nutr Exerc Metab. 2018;28(6):586–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Torregrosa-García A, Ávila-Gandía V, Luque-Rubia AJ, Abellán-Ruiz MS, Querol-Calderón M, López-Román FJ. Pomegranate extract improves maximal performance of trained cyclists after an exhausting endurance trial: A randomised controlled trial. Nutrients. 2019;11(4).

  • 151.

    Trexler ET, Smith-Ryan AE, Melvin MN, Roelofs EJ, Wingfield HL. Effects of pomegranate extract on blood flow and running time to exhaustion. Appl Physiol Nutr Metab. 2014;39(9):1038–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Ueberschlag SL, Seay JR, Roberts AH, DeSpirito PC, Stith JM, Folz RJ, et al. The Effect of Protandim Supplementation on Athletic Performance and Oxidative Blood Markers in Runners. PLoS One. 2016;11(8):e0160559.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Kern M, Heslin CJ, Rezende RS. Metabolic and performance effects of raisins versus sports gel as pre-exercise feedings in cyclists. J Strength Cond Res. 2007;21(4):1204–7.

    PubMed 

    Google Scholar
     

  • 154.

    Rietschier HL, Henagan TM, Earnest CP, Baker BL, Cortez CC, Stewart LK. Sun-dried raisins are a cost-effective alternative to sports jelly beans in prolonged cycling. J Strength Cond Res. 2011;25(11):3150–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Jowko E, Sadowski J, Dlugolecka B, Gierczuk D, Opaszowski B, Cieslinski I. Effects of Rhodiola rosea supplementation on mental performance, physical capacity, and oxidative stress biomarkers in healthy men. J Sport Health Sci. 2018;7(4):473–80.

    PubMed 

    Google Scholar
     

  • 156.

    Dowling EA, Redondo DR, Branch JD, Jones S, McNabb G, Williams MH. Effect of Eleutherococcus senticosus on submaximal and maximal exercise performance. Med Sci Sports Exerc. 1996;28(4):482–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 157.

    Eschbach LC, Webster MJ, Boyd JC, McArthur PD, Evetovich TK. The Effect of Siberian Ginseng (Eleutherococcus Senticosus) on Substrate Utilization and Performance during Prolonged Cycling. Int J Sport Nutr Exerc Metab. 2000;10(4):444.

    CAS 
    PubMed 

    Google Scholar
     

  • 158.

    Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, et al. Ergogenic and antioxidant effects of spirulina supplementation in humans. Med Sci Sports Exerc. 2010;42(1):142–51.

    PubMed 

    Google Scholar
     

  • 159.

    Wasuntarawat C, Pengnet S, Walaikavinan N, Kamkaew N, Bualoang T, Toskulkao C, et al. No effect of acute ingestion of Thai ginseng (Kaempferia parviflora) on sprint and endurance exercise performance in humans. J Sports Sci. 2010;28(11):1243–50.

    PubMed 

    Google Scholar
     

  • 160.

    Areta JL, Austarheim I, Wangensteen H, Capelli C. Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists. Med Sci Sports Exerc. 2018;50(4):817–26.

    PubMed 

    Google Scholar
     

  • 161.

    Tarazona-Díaz MP, Alacid F, Carrasco M, Martínez I, Aguayo E. Watermelon juice: potential functional drink for sore muscle relief in athletes. J Agric Food Chem. 2013;61(31):7522–8.

    PubMed 

    Google Scholar
     

  • 162.

    Bailey SJ, Blackwell JR, Williams E, Vanhatalo A, Wylie LJ, Winyard PG, et al. Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. Nitric Oxide. 2016;59:10–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of l-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J Sports Sci. 2015;33(14):1459–66.

    PubMed 

    Google Scholar
     

  • 164.

    Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, et al. Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients. 2016;8(8).

  • 165.

    McMahon NF, Leveritt MD, Pavey TG. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017;47(4):735–56.

    PubMed 

    Google Scholar
     

  • 166.

    Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc. 2020;52(10):2250–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Tesch PA, Karlsson J. Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol (1985). 1985;59(6):1716-1720.

  • 168.

    Totzeck M, Hendgen-Cotta UB, Rammos C, Frommke LM, Knackstedt C, Predel HG, et al. Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide. 2012;27(2):75–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Maroun MJ, Mehta S, Turcotte R, Cosio MG, Hussain SN. Effects of physical conditioning on endogenous nitric oxide output during exercise. J Appl Physiol (1985). 1995;79(4):1219-1225.

  • 170.

    Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9.

    PubMed 

    Google Scholar
     

  • 171.

    Granato D, Karnopp AR, van Ruth SM. Characterization and comparison of phenolic composition, antioxidant capacity and instrumental taste profile of juices from different botanical origins. J Sci Food Agric. 2015;95(10):1997–2006.

    CAS 
    PubMed 

    Google Scholar
     

  • 172.

    Wootton-Beard PC, Ryan L. A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Foods. 2011;3(4):329–34.

    CAS 

    Google Scholar
     

  • 173.

    Wootton-Beard PC, Ryan L. Combined use of Multiple Methodologies for the Measurement of Total Antioxidant Capacity in UK Commercially Available Vegetable Juices. Plant Foods Hum Nutr. 2012;67(2):142–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 174.

    Somerville V, Bringans C, Braakhuis A. Polyphenols and Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017;47(8):1589–99.

    PubMed 

    Google Scholar
     

  • 175.

    Azuma T, Tanaka Y, Kikuzaki H. Phenolic glycosides from Kaempferia parviflora. Phytochemistry. 2008;69(15):2743–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 176.

    da Silveira TFF, Meinhart AD, de Souza TCL, Teixeira Filho J, Godoy HT. Phenolic compounds from yerba mate based beverages – A multivariate optimisation. Food Chem. 2016;190:1159–67.

    PubMed 

    Google Scholar
     

  • 177.

    Załuski D, Olech M, Galanty A, Verpoorte R, Kuźniewski R, Nowak R, et al. Phytochemical Content and Pharma-Nutrition Study on Eleutherococcus senticosus Fruits Intractum. Oxid Med Cell Longev. 2016;2016:9270691-.

  • 178.

    Chung IM, Lim JJ, Ahn MS, Jeong HN, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res. 2016;40(1):68–75.

    PubMed 

    Google Scholar
     

  • 179.

    Kochan E, Szymańska G, Wielanek M, Wiktorowska-Owczarek A, Jóźwiak-Bębenista M, Grzegorczyk-Karolak I. The content of triterpene saponins and phenolic compounds in American ginseng hairy root extracts and their antioxidant and cytotoxic properties. Plant Cell Tissue Organ Cult. 2019;138(2):353–62.

    CAS 

    Google Scholar
     

  • 180.

    Sidhu JS, Zafar TA. Bioactive compounds in banana fruits and their health benefits. Food Qual Saf. 2018;2(4):183–8.

    CAS 

    Google Scholar
     

  • 181.

    Lucini L, Pellizzoni M, Pellegrino R, Molinari GP, Colla G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chem. 2015;170:501–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Kwan KKL, Huang Y, Leung KW, Dong TTX, Tsim KWK. Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Modulates Mitochondrial Bioenergetics in Cultured Cardiomyoblasts. Front Pharmacol. 2019;10(614).

  • 183.

    Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules. 2018;23(9):2322.

    PubMed Central 

    Google Scholar
     

  • 184.

    Al-Dhabi NA, Valan AM. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities. Evid Based Complement Alternat Med. 2016;2016:7631864.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Lucini L, Kane D, Pellizzoni M, Ferrari A, Trevisi E, Ruzickova G, et al. Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn.] cultivars. Ind Crops. Prod. 2016;83:11–6.

    CAS 

    Google Scholar
     

  • 186.

    Muszyńska B, Łojewski M, Sułkowska-Ziaja K, Szewczyk A, Gdula-Argasińska J, Hałaszuk P. In vitro cultures of Bacopa monnieri and an analysis of selected groups of biologically active metabolites in their biomass. Pharm Biol. 2016;54(11):2443–53.

    PubMed 

    Google Scholar
     

  • 187.

    Maimoona A, Naeem I, Saddiqe Z, Jameel K. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. J Ethnopharmacol. 2011;133(2):261–77.

    PubMed 

    Google Scholar
     

  • 188.

    Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R. Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem. 2004;52(12):3784–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 189.

    Koirala P, Jung HA, Choi JS. Recent advances in pharmacological research on Ecklonia species: a review. Arch Pharm Res. 2017;40(9):981–1005.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17(7):481–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 191.

    Bondonno CP, Croft KD, Ward N, Considine MJ, Hodgson JM. Dietary flavonoids and nitrate: effects on nitric oxide and vascular function. Nutr Rev. 2015;73(4):216–35.

    PubMed 

    Google Scholar
     

  • 192.

    Rees A, Dodd GF, Spencer JPE. The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients. 2018;10(12):1852.

    PubMed Central 

    Google Scholar
     

  • 193.

    Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Llorach R, Farran-Codina A, Barupal DK, et al. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol Nutr Food Res. 2016;60(1):203–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 194.

    Kapil V, Rathod KS, Khambata RS, Bahra M, Velmurugan S, Purba A, et al. Sex differences in the nitrate-nitrite-NO(•) pathway: Role of oral nitrate-reducing bacteria. Free Radic Biol Med. 2018;126:113–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 195.

    Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda). 2015;30(1):30–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 196.

    Lundberg JO, Weitzberg E, Gladwin MT. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 197.

    Olszowy-Tomczyk M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochemistry Rev. 2020;19(1):63–103.

    CAS 

    Google Scholar
     

  • 198.

    Lorenzo Calvo J, Alorda-Capo F, Pareja-Galeano H, Jiménez SL. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients. 2020;12(6):1796.

    PubMed Central 

    Google Scholar
     

  • 199.

    Baker ME, DeCesare KN, Johnson A, Kress KS, Inman CL, Weiss EP. Short-Term Mediterranean Diet Improves Endurance Exercise Performance: A Randomized-Sequence Crossover Trial. J Am Coll Nutr. 2019;38(7):597–605.

    CAS 
    PubMed 

    Google Scholar
     

  • 200.

    Nieman DC, Goodman CL, Capps CR, Shue ZL, Arnot R. Influence of 2-Weeks Ingestion of High Chlorogenic Acid Coffee on Mood State, Performance, and Postexercise Inflammation and Oxidative Stress: A Randomized, Placebo-Controlled Trial. Int J Sport Nutr Exerc Metab. 2018;28(1):55–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 201.

    Muggeridge DJ, Sculthorpe N, James PE, Easton C. The effects of dietary nitrate supplementation on the adaptations to sprint interval training in previously untrained males. J Sci Med Sport. 2017;20(1):92–7.

    PubMed 

    Google Scholar
     

  • 202.

    Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, et al. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol. 2017;12:285–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 203.

    Braakhuis AJ, Hopkins WG. Impact of Dietary Antioxidants on Sport Performance: A Review. Sports Med. 2015;45(7):939–55.

    PubMed 

    Google Scholar
     

  • 204.

    Nikolaidis MG, Kerksick CM, Lamprecht M, McAnulty SR. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev. 2012;2012:707941.

  • 205.

    Proteggente AR, Pannala AS, Paganga G, Lv B, Wagner E, Wiseman S, et al. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects their Phenolic and Vitamin C Composition. Free Radic Res. 2002;36(2):217–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 206.

    Cardarelli M, Rouphael Y, Pellizzoni M, Colla G, Lucini L. Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind Crops Prod. 2017;108:44–51.

    CAS 

    Google Scholar
     

  • 207.

    Deng G-F, Lin X, Xu X-R, Gao L-L, Xie J-F, Li H-B. Antioxidant capacities and total phenolic contents of 56 vegetables. J Funct Foods. 2013;5(1):260–6.

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply